Some of the reasoning:
>Preliminary assessment also suggests Imagen encodes several social biases and stereotypes, including an overall bias towards generating images of people with lighter skin tones and a tendency for images portraying different professions to align with Western gender stereotypes. Finally, even when we focus generations away from people, our preliminary analysis indicates Imagen encodes a range of social and cultural biases when generating images of activities, events, and objects. We aim to make progress on several of these open challenges and limitations in future work.
Really sad that breakthrough technologies are going to be withheld due to our inability to cope with the results.
We certainly don't want to perpetuate harmful stereotypes. But is it a flaw that the model encodes the world as it really is, statistically, rather than as we would like it to be? By this I mean that there are more light-skinned people in the west than dark, and there are more women nurses than men, which is reflected in the model's training data. If the model only generates images of female nurses, is that a problem to fix, or a correct assessment of the data?
If some particular demographic shows up in 51% of the data but 100% of the model's output shows that one demographic, that does seem like a statistics problem that the model could correct by just picking less likely "next token" predictions.
Also, is it wrong to have localized models? For example, should a model for use in Japan conform to the demographics of Japan, or to that of the world?
If you want the model to understand what a "nurse" actually is, then it shouldn't be associated with female.
If you want the model to understand how the word "nurse" is usually used, without regard for what a "nurse" actually is, then associating it with female is fine.
The issue with a correlative model is that it can easily be self-reinforcing.
I'd say that bias is only an issue if it's unable to respond to additional nuance in the input text. For example, if I ask for a "male nurse" it should be able to generate the less likely combination. Same with other races, hair colors, etc... Trying to generate a model that's "free of correlative relationships" is impossible because the model would never have the infinitely pedantic input text to describe the exact output image.
I have a feeling that we need to be real with ourselves and solve problems and not paper over them. I feel like people generally expect search engines to tell them what's really there instead of what people wish were there. And if the engines do that, people can get agitated!
I'd almost say that hurt feelings are prerequisite for real change, hard though that may be.
These are all really interesting questions brought up by this technology, thanks for your thoughts. Disclaimer, I'm a fucking idiot with no idea what I'm talking about.
Which real world? The population you sample from is going to make a big difference. Do you expect it to reflect your day to day life in your own city? Own country? The entire world? Results will vary significantly.
If I ask for pictures of Japanese people, I'm not shocked when all the results are of Japanese people. If I asked for "criminals in the United States" and all the results are black people, that should concern me, not because the data set is biased but because the real world is biased and we should do something about that. The difference is that I know what set I'm asking for a sample from, and I can react accordingly.
Well the results would unquestionably be biased. All results being black people wouldn't reflect reality at all, and hurting feelings to enact change seems like a poor justification for incorrect results.
> I'd say it doesn't actually matter, as long as the population sampled is made clear to the user.
Ok, and let's say I ask for "criminals in Cheyenne Wyoming" and it doesn't know the answer to that, should it just do its best to answer? Seem risky if people are going to get fired up about it and act on this to get "real change".
That seems like a good parallel to what we're talking about here, since it's very unlikely that crime statistics were fed into this image generating model.