This is the sort of absolutism that is so pointless.
At the same time, what's equally frustrating to me is defense without a threat model. "We'll randomize this value so it's harder to guess" without asking who's guessing, how often they can guess, how you'll randomize it, how you'll keep it a secret, etc. "Defense in depth" has become a nonsense term.
The use of memory unsafe languages for parsing untrusted input is just wild. I'm glad that I'm working in a time where I can build all of my parsers and attack surface in Rust and just think way, way less about this.
I'll also link this talk[1], for the millionth time. It's Rob Joyce, chief of the NSA's TAO, talking about how to make NSA's TAO's job harder.
[0] https://arstechnica.com/information-technology/2021/01/hacke...
I'm beginning to worry that every time Rust is mentioned as a solution for every memory-unsafe operation we're moving towards an irrational exuberance about how much value that safety really has over time. Maybe let's not jump too enthusiastically onto that bandwagon.
Billions and billions of dollars. Large organizations like Microsoft and Google have published numbers on the proportion of vulns in their software that are caused by memory errors. As you can imagine, a lot of effort is spent within these institutions to try to mitigate this risk (world class fuzzing, static analysis, and pentesting) yet vulns continue to persist.
Rust is not the solution. Memory-safe languages are. It is just that there aren't many such languages that can compete with C++ when it comes to speed (Rust and Swift are the big ones) so Rust gets mentioned a lot to preempt the "but I gotta go fast" concerns.