zlacker

[return to "Do you really need Redis? How to get away with just PostgreSQL"]
1. _ugfj+z2[view] [source] 2021-06-12 07:29:54
>>hyzyla+(OP)
You really don't need anything fancy to implement a queue using SQL. You need a table with a primary id and a "status" field. An "expired" field can be used instead of the "status". We used the latter because it allows easy retries.

1. SELECT item_id WHERE expire = 0. If this is empty, no items are available.

2. UPDATE SET expire = some_future_time WHERE item_id = $selected_item_id AND expire = 0. Then check whether UPDATE affected any rows. If it did, item_id is yours. If not, loop. If the database has a sane optimizer it'll note at most one document needs locking as the primary id is given.

All this needs is a very weak property: document level atomic UPDATE which can return whether it changed anything. (How weak? MongoDB could do that in 2009.)

Source code at https://git.drupalcode.org/project/drupal/-/blob/9.2.x/core/... (We cooked this up for Drupal in 2009 but I am reasonably sure we didn't invent anything new.)

Of course, this is not the fastest job queue there is but it is quite often good enough.

◧◩
2. sigil+gp1[view] [source] 2021-06-12 21:42:33
>>_ugfj+z2
Problems with this approach:

1. Recovery.

2. Concurrency.

3. Polling.

In more detail:

1. Recovery. Suppose a worker dies while processing a job. The job should be retried, but how do you know this, since expire > 0? You can impose a timeout, but that has drawbacks -- there might be long jobs you repeatedly start but never finish. To recover failed jobs without imposing a timeout, you'd have to run both the UPDATE and the job processing inside a transaction. That way, a failed job can result in an implicit ROLLBACK, freeing the job for future worker attempts.

2. Concurrency. So now recoverable workers are trying to claim jobs inside a transaction. If there are 10 jobs and 10 workers, we want all 10 jobs processing concurrently. However, each worker SELECTs the first item_id and tries to UPDATE that same row. 1 worker wins. The other 9 workers block while that transaction completes, then update zero rows. Concurrency will hover around 1.

3. Polling. In the transactional UPDATE approach, there's no way to tell whether there are free jobs short of trying to claim them via UPDATE, which blocks. So you must poll, and either burn cpu on quiet queues, or introduce an artificial delay into job processing times. The beauty of the SKIP LOCKED approach is that it can tell whether there are free (not currently processing) jobs. Even if you wake all 10 workers up via LISTEN / NOTIFY for a lone job, 9 workers in the thundering herd will fail to claim the job, and go back to sleep.

I blame TFA for not sufficiently explaining the SKIP LOCKED approach. A much better explanation is here: https://www.2ndquadrant.com/en/blog/what-is-select-skip-lock...

[go to top]