zlacker

[return to "Ask HN: What scientific phenomenon do you wish someone would explain better?"]
1. umvi+go[view] [source] 2020-04-26 22:20:34
>>qqqqqu+(OP)
I would like to understand how cellular biology processes actually work. Like, how do all the right modules and proteins line up in the right orientation every time? Every time I watch animations, it seems like the proteins and such just magically appear when needed and disappear when not needed [0]. Sometimes it's an ultra-complex looking protein and it just magically flys over to the DNA, attaches to the correct spot, does it's thing, detaches, and flies away. Yeah right! As if the protein is being flown by a pilot. How does it really work?

[0] https://youtu.be/5VefaI0LrgE

◧◩
2. IAmEve+tN[view] [source] 2020-04-27 02:31:49
>>umvi+go
I studied bioinformatics and found the standard textbook, Albert's "Molecular Biology of the Cell"[0] to be one of the most captivating books I've read. It's like those extremely detailed owners' manuals for early computers, except for cells.

The amount of complexity is just absolutely insane. My favourite example: DNA is read in triplets. So, for example, "CAG" adds one Glutamine to the protein it's building[1].

There are bacteria that have optimised their DNA in such a way that you can start at a one-letter offset, and it encodes a second, completely different, but still functional protein.

I found the single cell to be the most interesting subject. But of course it's a wild ride from top to bottom. The distance from brain to leg is too long, for example, to accurately control motion from "central command". That's why you have rhythm generators in your spine that are modulated from up high (and also by feedback).

Every human sensory organ activates logarithmically: Your eye works with sunlight (half a billion photons/sec) but can detect a single photon. If you manage to build a light sensor with those specs, you'll get a Nobel Prize and probably half of Apple...

[0]: https://amzn.to/2zzDt8P

[1]: https://en.wikipedia.org/wiki/DNA_codon_table

◧◩◪
3. PetitP+151[view] [source] 2020-04-27 06:34:40
>>IAmEve+tN
The Albert's MBoC is pretty much known as the reference textbook where I studied.

Note that the 4th edition is (sortof) freely available at the NIH website. The way to navigate through that book is bizarre though, as the only way to access its content is by searching.

https://www.ncbi.nlm.nih.gov/books/NBK21054/

[go to top]